CHEMISTRY MARKING SCHEME 2015 56/3/RU

. NO.	Value points	MARKS
Q.1	CH ₃ -CH(Br)-CH ₃	1
Q.2	Due to coagulation of colloidal clay particles	1
Q.3	X ₄ Y ₃	1
Q.4	$H_2SO_3 H_2SO_4H_2S_2O_8$, H_2SO_5 (any two formulae)	1/2 + 1/2
Q.5	1-ethoxy-2-methylpropane	1
Q.6	(i) Negative deviation , temperature will increase.	1/2 +1/2
	(ii) Blood cell will swell due to osmosis , water enters into the cell.	1/2+1/2
Q.7		
	$Cu^{2^+} + 2e^- \rightarrow Cu$	
	63.5 g Cu is deposited = 2x96500 C	
	1.27 g Cu is deposited = 2x96500x1.27/63.5 C = ixt (Q = ixt)	1
		1
	l = 2x96500x1.27/63.5 x 2 = 1930s	1
	OI by Foreday First law	
	by Faraday First law	1/
	1 = 2X X	/2
	z = atomic mass/valencyxF	
	1.27 - 63.5 x 2 x t / 2 x 9 6500	1/
	1.27 - 05.5x2x(/2x50500	72
	t = 1930 s	1
Q.8	Similarity : Both show contraction in size /Both show irregularity in their electronic	1
	configuration/Both are stable in +3oxidation state (any one)	
	Difference : Actinoids are mainly radioactive but lanthanoids are not/ Actinoids show wide range	1
	of oxidation states but lanthanoids do not /Actinoid contraction is greater than lanthanoid	
	contraction. (any other one similarity and one difference)	
Q.9	(i) PCC / Cu at 573 K	1
	(ii) NH_3 , Δ (heat)	1
	OR	
Q9.	(i) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO$	1
	(ii) $CH_3COOH < CI-CH_2-COOH < F-CH_2-COOH$	1
Q.10	(i) Pentaamminechloridocobalt(III) ion	1
	(ii) K ₂ [NiCl ₄]	1

Q.11	Physisorption : adsorbate is held by weak van der Waals' force	1,1,1
	non-specific	
	It forms multimolecular layer	
	Chemisorption : adsorbate molecules are held by strong forces like a chemical bond	
	It is specific	
	It forms unimolecular layer	
- 10	(or any correct three points)	
Q.12	(i) Phenoxide ion is stabilized by resonance as compared to CH_3O / in phenol, oxygen acquires	1
	+ ve charge due to resonance and releases H lon easily whereas there is no resonance in	
	methanol.	
	(ii) Due to lone pair-lone pair repulsion, on oxygen	1
		1
	(iii) $(CH_3)_3C^+$ is 3^0 carbo-cation which is more stable than CH_3^+ for $S_{\mathbb{N}}1$ reaction.	1
Q.13	$p^0 - p = w_s x \text{ Msolvent}$, $s = \text{solute}$	1
~~~~	$\frac{p^0}{M_s \times Wsolvent}$	
	$(32 - 31.84)/32 = 10 \times 18/Ms \times 200$	1
	M _s = 180 g/mol	1
Q.14	(i) Zone refining	1
	(ii) $SiO_2$ act as flux to remove the impurity of Iron oxide	1
	(iii) Depressants prevent one type of sulphide ore forming the froth	1
- 15	with air bubble.	
Q.15	(I) Starch.	1
	(ii) a Holiv polypoptido chains are stabilized by intramolocular. H bondingwhereas & pleated	
	(ii) a- heix polypeptide chains are stabilized by intramolecular H-bolidingwhereas p-pleated	1
	sheet is stabilized by intermolecular H-boliding. (of any other difference)	1
	(iii) Pernicious anaemia	1
0.16	$\Lambda = \frac{1000 \text{ sk}}{5} \text{ Scm}^2 \text{mol}^{-1}$	1%
Q 0	M M	/-
	$\Lambda_{\rm m} = \frac{1000 \times 5.25 \times 10^{-4}}{2.5 \times 10^{-4}}  \rm S cm^2 mol^{-1}$	
		1
	= 210 S cm ² mol ⁻¹	
	$\Lambda_{\rm m}^{0}$ HCOOH = $\lambda^0$ HCOO ⁻ + $\lambda^0$ H ⁺	
	(50.5 + 349.5) S cm ² mol ⁻¹ = 400 S cm ² mol ⁻¹	1/2
	$\alpha = \Lambda_m / \Lambda_m^0$	
	$\alpha = 210/400 = 0.525$	1



	(ii)	1
	$CH_3CH_2CI + AgNO_2 \rightarrow CH_3CH_2NO_2 + AgCI$	
	(iii) $CH_2CH_2CH_2CH(Br)CH_2 + KOH(alc.) \rightarrow CH_2CH_2CH=CHCH_2$	1
		_
Q.19	(a) (i) Because $Cu^+$ undergoes disproportionation as $2Cu^+ \rightarrow Cu + Cu^{2+}$	1
	(ii) Because of small size of metal, high ionic charge and availability of vacant d –orbital.	1
	(b) $(\Gamma_2 \Omega_2^2 + 8H^+ + 3N\Omega_2^- \rightarrow 2\Gamma_1^{3+} + 3N\Omega_2^- + 4H_2\Omega$ (Balanced equation only)	1
Q.20	(i) ethylene glycol HO-CH ₂ -CH ₂ -OH	$\frac{1}{1_2} + \frac{1}{2}$
	HOOC-COOH	
	Terephthalic acid	
	(ii) 1,3- butadiene $CH_2=CH-CH=CH_2$	
	$CH = CH_2$	1/2 + 1/2
	Styrene	
	(iii) Chloroprene CH ₂ =C(Cl)-CH=CH ₂	1/ 1/
0.21	(Note: Half mark for name/s and half mark for structure/s in each case)	/2 , /2
Q.21	СООН	1+1+1
	COOH	
	Br	
	i) (CH ₃ ) ₂ C= N-NH ₂ ii) / benzoic acid iii)	
0.22	(i) Stoichiometric defect	1
	(ii) Schottky defect e.g.NaCl (or any other example)	1/2 + 1/2
	(iii) Density of crystal decreases	1
Q.23	(i) Social awareness ,Health conscious, Caring , empathy, concern .(or any other two values)	1/2 , 1/2
	(ii) Cartoon display / street display/poster making (or any other correct answer)	1
	(iii) Wrong choice and over dose may be harmful	1
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2

Q.24	(a) $[A]_0 = 0.10 \text{ mol/L} [A] = 0.05 \text{ mol/L} \text{ at time t} = 10s$	
	$k = \frac{2.303}{t} \log[A_0]$	1⁄2
	$k = \frac{2.303}{10 \text{ s}} \frac{\log 0.10}{0.05}$ k = 0.0693 s ⁻¹	1
	t = 20s k = $\frac{2.303}{t} \log[A_0]$ t [A]	
	$k = \frac{2.303}{20 \text{ s}} \frac{\log 0.10}{0.025}$ k = 0.0693 s ⁻¹	1
	As the rate constant is same so it follows pseudo first order reaction.	1/2
	(b) Average rate of reaction = $-\Delta[R]/\Delta t$	1/2
	= - [ 0.025 - 0.05 / 20 - 10]	1/2
	= $0.0025 \text{ mol } L^{-1} s^{-1}$	1
	OR	
Q24.	<ul> <li>(a)</li> <li>(i) Rate of reaction becomes 4 times</li> <li>(ii) Over all order of reaction = 2</li> </ul>	1
	(b) $t_{1/2} = \frac{0.693}{k}$	
	30min = <u>0.693</u>	
	$k = 0.0231 \text{min}^{-1}$	1
1		1

	$k = 2.303 \log[\Lambda_{1}]$	1/2
	$K = 2.303 \log [A_0]$	/2
	t [A]	
	t = 2.303log 100	
	0.0231  10	1/
	0.0231 10	1/2
	t = <u>2.303</u> min	
	0.0231	
	t = 0.07 min	
	t = 99.7mm	1
		1
Q.25	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI , there is an increase in acidic	1
	character observed.	1
	(ii)Oxygen exists as diatomic $O_2$ molecule while sulphur as polyatomic $S_8$	1
	(III)Due to non-availability of d orbitals	1
	(b)	
	F	
	•••	
	CL F F	
	F	1+1
	F	
	i) ii)	
	OR	
Q25.		
	(i) White Phosphorus, because it is less stable due to angular strain	
	(ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.	1/2 , 1/2
	Or $NO+O_3 \rightarrow NO_2+O_2$	1
	(iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the	
	lone pairs of fluorine	
	(iv)Helium	1
	(v) $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	1
		1
Q.26		
		1 x5

